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Abstract
Early ultrasound screening of developmental dysplasia of the hip (DDH) is crucial for timely intervention and preventing
hip replacement. However, the lack of standardization in image acquisition during DDH ultrasound screening often hinders
the accuracy and consistency of the screening process, posing a significant challenge. Therefore, there is an urgent need to
develop automated, visual, and high-precision methods to assist in image standardization. Conventional quality classification
methods, which rely on the recognition and judgment of anatomical structures, struggle to achieve accurate results. To address
this, we propose the QualityDDH framework, a visual quality assessment tool. It uses structural priors to obtain key structural
segmentation maps and assesses anatomical availability based on standardized guidelines. We applied the QualityDDH
framework to clinical prospective validation. It assisted ultrasound physicians of different levels in making standardized
judgments using an independent external validation dataset of 600 infants. TheQualityDDH framework improved performance
for ultrasound physicians at all levels: Expert (Area Under the Receiver Operating Characteristic Curve, AUC, increased by
4.70%), Attending (AUC increased by 12.95%), and Resident (AUC increased by 20.85%). This lays the foundation for the
clinical application of intelligent auxiliary screening for DDH. Code available at: https://github.com/Liuruhan/QualityDDH.
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1 Introduction

Developmental dysplasia of the hip (DDH) is a prevalent
pediatric musculoskeletal disorder, where abnormal hip joint
development can cause long-term functional issues without
early diagnosis and treatment [1, 2]. Ultrasound (US) imag-
ing, particularly the Graf method, is a reliable diagnostic
approach for DDH [3–5]. Created by Graf in 1980, Graf
method assesses hip joint development and stability via US,
aiding DDH management [6].

As technology progresses [7, 8], standards for DDH US
examinations, championed by Professor Graf, have evolved.
The current Graf method stresses obtaining standard images
for DDH diagnosis [8], which involves two checklists: one
for anatomical identification (Checklist I) and another for
usability (Checklist II), as detailed in Fig. 1. However, accu-
rately identifying these fine details during image acquisition
is time-consuming and depends on the operator’s expertise
[9]. Consequently, less experienced sonographers may pro-
duce substandard scans, riskingmisdiagnosis. Literature [10]
shows that nearly half of studies fail to meet Graf quality cri-
teria, often due to inadequate anatomical marker description
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Fig. 1 Standards for DDH US examinations, including Checklist I
for anatomical identification and Checklist II for usability assessment.
Checklist I requires the visibility of eight key hip joint structures, includ-
ing the chondro-osseous border (CB), femoral head (FH), synovial fold
(SF), joint capsule (JCP), labrum (La), cartilaginous roof (CR), bony

roof (BR), and bony rim (concavity–convexity). Checklist II focuses on
usability assessment, requiring that the lower limb of the os ilium in the
fossa acetabuli must be visible, the os ilium contour must be straight or
parallel to the probe, and the labrum must be visible

or non-standard images.Moreover, inconsistent image acqui-
sition can lead to misdiagnosis, highlighting the need for
standardized imaging techniques. Jaremko et al. [11] found
that variations in US probe direction could cause misdiag-
noses in many cases, further emphasizing the necessity of
standardized imaging techniques for accurate DDH diagno-
sis.

While many researchers are considering using deep learn-
ing technology for medical imaging [12–14], existing meth-
ods based on binary classification models and key point
detection have limitations in clinical practice [15–18]. These
methods concentrate more on diagnosing and classifying
DDH in standardized images, which limits their usability
in actual clinical settings with non-standardized US inter-
ference. Also, our previous work [17, 18] put forward the
segmentation of seven key hip joint structures for visualizing
standardization and DDH severity classification for clini-
cians. However, subsequent clinical use showed that merely
offering key structure segmentation results, while somewhat
reducing non-standard imaging issues, is still user-dependent
and has limited benefits for inexperienced junior doctors.
To address these challenges, we propose the QualityDDH
framework, which, on the basis of key hip joint structure
segmentation, adds visual quality assistance evaluation on
external dataset, and compare the framework with six sono-
graphers of different levels in actual clinical practice. The
contributions of the framework are as follows:

– We proposed an interactive learning-based visual quality
prompt annotation strategy in linewith the quality assess-
ment guidelines. This helps experts reach a consensus on
the standardized assessment of DDH US.

– We designed a relative position-sensitive iliac structure
assessment module. It can quantify the standardization
criteria using the segmentation map of the iliac structure.

Also, it provides a visual standardization judgment for
Checklists I and II.

– We carried outmethodological validation of the proposed
method on an external dataset named SPD dataset of
600 standard planes from 600 participants. Our method
achieved an accuracy of 85.94% (internal test set) and
97.33% (external set) in standardization judgment, which
is superior to traditional classification networks.

The remainder of this paper is organized as follows: Sect. 2
presents the literature review; Sect. 3 elaborates on the pro-
posed methodology; and Sect. 4 details the experimental
setup, results, as well as the comparison and analysis.

2 Related work

This section systematically examines the role of computer-
aided algorithms in enhancing the standardization ofmedical
images, with a particular focus on DDH US images. The
analysis is structured around three key dimensions: first,
the implementation of quality assessment and control tech-
niques in medical imaging; second, the advancement of
ultrasound-based recognition and segmentation methodolo-
gies for neonatal hip joint and cartilage structures; and third,
the development of automated DDH screening and diagnos-
tic grading systems grounded in ultrasonic imaging.

2.1 Medical image quality assessment and control
methods

Medical image quality control is crucial for accurate diag-
nosis and effective treatment planning. Many studies have
categorized quality assessment methods into visual quality-
based and task-based approaches [19], highlighting the
significance of traditional image quality metrics and empha-
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sizing the importance of specialized metrics for medical
tasks. For example, Chow et al. [20] evaluated the impact
of various full-reference metrics on MRI images and found
that noise quality measurement (NQM) had the best correla-
tion with subjective ratings. This underscores the importance
of quality assessment in medical contexts.

Ultrasound imaging, favored for its non-invasive and real-
time capabilities, faces quality challenges like speckle noise
andmotion artifacts. Razaak et al. [21] developed theCardiac
Ultrasound Video Quality Index (CUQI), which effectively
assesses cardiac ultrasound video quality by integrating
cardiac motion and structural information, showing strong
correlationwith subjective scores. Panayides et al. [22] found
the Weighted Signal-to-Noise Ratio (WSNR) to be the most
effective metric for atherosclerotic plaque ultrasound videos.
However, more technologies focus on the noise interference
of image acquisition, and less consideration is given to the
measurement of the standardization of anatomical structures
in ultrasonic images. The research on related quality stan-
dards and methods is lacking.

2.2 Hip joint structure segmentationmethods

Accurate segmentation of anatomical structures in non-
standardized images is crucial for developing standardized
quality assessment indicators. Early research focused on
ilium segmentation using manually extracted features [23–
28]. However, these methods had poor generalization and
were complex, mainly focusing on high-echo structures with
limited applicability. Subsequently, deep learning techniques
were applied to anatomical structure segmentation [17, 29],
but most were used on manually standardized ultrasound
images, making it hard to evaluate their effectiveness in
segmenting structures in unstandardized images. Given the
limitations of existingmethods in handling non-standardized
images, there is an urgent need to develop more robust
and adaptive segmentation approaches. The automatic DDH
diagnosis approaches should be capable of accurately identi-
fying anatomical structures across a wider range of image
conditions. This would significantly enhance the reliabil-
ity and effectiveness of automated diagnostic systems in
real-world clinical settings. Future research should focus on
improving the generalization and applicability of segmen-
tation algorithms, particularly for non-standardized images.
This could involve exploring advanced deep learning archi-
tectures or incorporating additional contextual information
to better handle image variations and improve segmentation
accuracy.

2.3 Deep-learningmethods in DDH severity
classification

Currently, there is a growing focus among researchers on
developing automatic DDH diagnosis methods based on US
images, with deep learning-based approaches gaining partic-
ular attention. These automated diagnostic methods can be
classified into three main types. The first type is end-to-end
classification methods, such as the two-stage meta-learning-
based deep exclusive regularization machine presented by
Gong et al. [15]. The second type relies on anatomical struc-
ture segmentation and key point detection [16, 30]. The third
type is based on multi-task networks, like the AutoDDH
method [18] we proposed in our previous study, which
combines anatomical structure features for accurate DDH
classification. However, similar to the segmentation meth-
ods for hip joint structures, these approaches generally do
not address the standardization of ultrasound images and
often assume that the input images are standardized. This
assumption poses challenges to the stability of the models.
Consequently, developing aDDHquality assessmentmethod
based on anatomical structures and standardized guidelines
[6] is of great significance and requires urgent research. Such
a method could enhance the reliability and effectiveness of
automated DDH diagnosis in clinical practice.

3 Method

The QualityDDH framework is a visual AI tool designed
to assist sonographers in ensuring the collection of ultra-
sonic standard planes for DDH screening. As illustrated in
Fig. 2, the framework comprises threemodules. First, NHBS-
Net [17] performs anatomical structure segmentation and
automatically segments seven structures related to standard-
ization [7, 8]. Second, Checklist I module calculates the
number of pixels in each structure and provides non-standard
prompts based on the threshold values of each structure.
Third, Checklist II module extracts the iliac bone edge line
and classifies it into the iliac bone plane and the lower limb of
the iliac bone based on its position coordinates. The iliac bone
plane angle is calculated based on the position coordinates of
the iliac bone plane, and parallel non-standard prompts are
provided. Additionally, visual reminders are given based on
the length of the lower limb of the iliac bone.

3.1 Key structure segmentation in hip joint

The key structure segmentationmodel is based on theNHBS-
Net network framework. In addition to the original NHU
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Fig. 2 Overview of QualityDDH. QualityDDH system contains three parts: NHBS-Net for key structures segmentation, Quality Assessment
Module (Checklist I module and Checklist II Module) for evaluating the quality of input US images, and Standard application to provide the visual
quality assessment results

data set, some non-standard images are added for training to
improve the model’s performance in non-standard images.
See [17] for the specific network architecture.

3.2 Interactive quality assessment based on
checklists

Previous studies on quality assessment have shown sig-
nificant individual differences among experts [14, 31]. In
response, we propose an AI-assisted visual quality assess-
ment method for human–computer interaction with ultra-
sound physicians. This method not only enhances the objec-
tivity and consistency of quality assessment but also provides
real-time visual feedback to assist physicians inmakingmore
accurate judgments. Furthermore, we conduct a detailed
comparison between this AI-assisted method and the tradi-
tional expert back-to-back consensus approach. The results
demonstrate that our proposed method achieves higher con-
sistency and reliability in quality assessment. It effectively
reduces the impact of individual differences among experts.
This makes it a promising alternative to traditional expert
consensus methods.

In line with DDH ultrasound standards, we’ve developed
the Checklist-I module (Fig. 3a). It calculates pixel counts
for each structure using the seven key structural diagrams
from our key structure segmentation.We also determined the
pixel counts for all structures in the NHU dataset. Structures
with pixel counts below 60% of the standard image’s average
are highlighted. Beyond pixel counts, we supply the average

pixel value per structure and flag those below 60% of the
standard. These dual highlights aid ultrasound physicians in
visually assessing Checklist-I standardization.

Our proposed Checklist-II module (Fig. 3b) focuses on
anatomical structure availability identification, based on
structural visibility judgment. Since the visibility of struc-
ture La has been confirmed in the Checklist-I module, the
Checklist-II module concentrates on the morphology of RF.
The coordinates of RF’s upper edge line are extracted from
its segmented image. A coordinate classification model is
designed based on these coordinates. Regression model pro-
cesses the edge line coordinates to predict the parallel line and
the lower edge of the ilium. Additionally, a linear regression
model predicts the angle of the parallel line using the coor-
dinates of the ilium’s parallel line. If the angle error exceeds
40% of the standard image, it is highlighted. For the lower
edge of the ilium, if its length is below the empirical thresh-
old, it is also highlighted. These dual prompts offer ultrasonic
physicians visual standards for Checklist-II.

3.3 Structural prior position regression (SPPR)
module

The Checklist-II mod incorporates the SPPR module to
analyze the ilium structure, and the upper edge line of the
ilium distinguishes the plane of the os ilium and the lower
limb of the os iliumvia SPPR. The parallel angle is calculated
through the plane of the os ilium, and the lower edge angle
is determined through the lower limb of the os ilium.
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Fig. 3 Procedures in Checklist-I and Checklist-II module. a The
Checklist-I module involves several procedures. First, key structure
segmentation is performed using NHBS-Net. Then, the module con-
ducts segment pixel counting and average pixel value calculation for
each structure. These steps help in assessing the standardization of the

structures based on pixel-related metrics. b The Checklist-II module
includes four steps: segmenting bony roof, detecting the upper edge of
bony roof, identifying the parallel line and the lower edge of the ilium,
calculating the plane angle, and calculating visibility of lower limb of
os ilium

Fig. 4 Schematic diagram of calculating parallel angle in SPPR mod-
ule. Calculating parallel angle via SPPR module includes three steps:
calculating the position in edge of bony roof, classifying each point
into plane of os ilium or lower limb of os ilium, and applying a linear
regressor to obtain the parallel plane angle

Firstly, the absolute position coordinates of the upper edge
line V = {n1, n2, . . . , ni , . . . , nN } are obtained, where ni =
(xi , yi ) represents the coordinates of the i-th point on the
upper edge line. Secondly, the relative position coordinates
V ′ = {n′

1, n
′
2, . . . , n

′
i , . . . , n

′
N } are calculated, where n′

i =
(xi − x1, yi − y1). Thirdly, the relative position coordinate
point set V ′ is sampled by sliding window to generate the
sampled point set matrix M ∈ R

LSW×(N−LSW ). The point
set matrix M is used for outputting the regression model to
classify the point coordinates. To calculate the parallel angle,
absolute coordinates of certain points on the iliac plane are
input into a linear regressor to fit a parallel line. The slope
of this line determines the parallel angle of the iliac plane.
Additionally, the angle of the lower iliac edge is found by
calculating the angle of the line connecting the start and end
points of the lower edge (Figs. 4 and 5).

3.4 Training and testing strategy of QualityDDH

During the training process, the regression model classifier
is fed with the coordinates of the iliac edge line extracted
from structural segmentation annotations. The input com-
prises fixed-length point coordinate pairs, with themaximum
length set to the number of points on the longest iliac edge
line. If the input length is shorter than this maximum, it is
padded with zeros to meet the required length. In the test-
ing phase, NHBS-Net predicts the structural segmentation.
Based on this predicted segmentation, the iliac edge line is
extracted. The coordinates of this edge line are then extended
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Fig. 5 Schematic diagram of calculating the angle of the lower edge of
the iliac bone in SPPR module. Calculating the angle of the lower edge
of the iliac bone via SPPR module includes three steps: extracting the

lower limb of os ilium, calculating three parameters for lower limb of
os ilium, and calculating the line ratio

to form a specified-length point coordinate pair. This pair is
input into the trained regressionmodel classifier to determine
whether the points belong to the iliac plane or the lower limb
of the ilium. The parallel angle of the iliac bone is calculated
using the points identified as part of the iliac plane. Mean-
while, the length and angle of the lower edge of the iliac
bone are computed based on the points classified as part of
the lower limb of the ilium.

In clinical practice, ultrasound image data is first input into
NHBS-Net to obtain segmentation results for seven anatom-
ical structures. Then, based on these results, the pixel counts
of the seven structures are calculated, and visibility alerts
are provided according to a threshold (structures with val-
ues below the given threshold receive an ’unstandard’ alert),
which involves the Checklist I judgment. Next, the point
coordinates that form the iliac bone edge line are extracted
from the bony roof segmentation results. These coordinates
are extended to a specified length and fed into a trained regres-
sion model classifier to obtain two categories: plane of os
ilium and lower limb of os ilium. The parallel angle of the
iliac bone is calculated using the points in the plane of os
ilium category, while the length and angle of the lower edge
of the iliac bone are determined using the points in the lower
limb of os ilium category. Parallelism and lower edge vis-
ibility alerts are provided, which involves the Checklist II
judgment. Finally, the visual standards from the Checklist
I and Checklist II judgments are used to assist ultrasound
doctors in image acquisition.

4 Experiments

4.1 Dataset

This studywas approvedby theEthicsCommittee of themed-
ical institution (KY2021-286-B). The study involved three
datasets retrospective collected from two hospitals, namely
theNeonatal HipUS (NHU) dataset, the standard plane judg-
ment (SPJ) dataset (https://github.com/hidden-ops/NHBS-
Net_SPJ_dataset) (Fig. 6), and the Standard Plane Determi-
nation (SPD) dataset. All datasets were NHUdataset and SPJ
dataset were used for model development and internal vali-
dation. SPD dataset was used for external validation. As the
study utilized fully anonymized reports and US images, the
need for informed consent was waived.

The NHU and SPJ datasets from Shanghai Sixth People’s
Hospital were employed for constructing and internal eval-
uating the preliminary application value of the QualityDDH
system. NHU dataset including 563 images with seven key
structures annotatedweremarked andproofreadby two sono-
graphers with years of experience. NHU dataset was used for
QualityDDH construction and SPJ dataset includes a total of
50 cases, ofwhich 25 cases are standard and 25 cases are non-
standard (also seen in the NHBS-Net paper [17]). A total of
613 US images, each of which has a seven-structure segmen-
tation tag, and in the predicted bony roof structure, the edge
of bony roof is classified as the classification of plane of os
ilium and the lower limb of os ilium. The combination of the
NHU and SPJ datasets was randomly divided into training
and internal testing sets in a ratio of 8:2.
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Fig. 6 Flowchart showing the datasets involved in this study and the
exclusion criteria in development set

The SPD dataset was obtained from Renji Hospital,
Shanghai JiaotongUniversity School ofMedicine and served
as an external validation set for StandardDDH system and
for six sonographers’ reader study. The SPD dataset was ret-
rospectively collected from Renji Hospital, Shanghai Jiao
Tong University School of Medicine during July 2022 to
June 2023, and included a total of 600 two-dimensional US
images from children aged 0 to 6 months. A total of 498
images were randomly selected according to the incidence
rates of different types of DDH, among which 291 were type
I, 190 were type IIa/IIb, 17 were type IIc, and 2 were type
III/IV. In addition, 20%of non-standard images (102 images)
were specially selected. All images were selected by inde-
pendent sonographerswithmore than three years’ experience
in DDH diagnosis who were not involved in this study. Dur-
ing hip ultrasonography, infants were positioned in a lateral
decubitus positionwith a slight hip flexion, and a 5−7.5MHz
linear probe was placed at the greater trochanter of the femur
on the lateral side of the hip, maintaining parallel alignment
with the body’s long axis.

4.2 Implementation details

All experiments in our study were conducted on an Intel (R)
Core (TM) CPU i9-14900K @ 3.20GHz and two NVIDIA
GeForce RTX 4090D GPUs, operating on the Ubuntu Linux
platform. Both the proposed QualityDDH framework and
other state-of-the-art methods utilized the same loss function
design and grid search strategy for hyperparameter tuning.

The segmentation labels were provided by two senior
sonographer experts. These experts determined the bound-
ary between the iliac plane and the lower edge based on the
iliac crest line, dividing it into the plane of os ilium and the
lower limb of os ilium. If the boundary points marked by the
two experts differed by more than 10 pixels, a third senior
expert was involved to mark the boundary. The midpoint of
the boundary points marked by the two closest experts was
used as the gold-standard boundary. Conversely, if the dif-
ference was 10 pixels or less, the midpoint of the boundary
points marked by the two experts served as the gold-standard
boundary.

4.3 Evaluationmetrics

In our study, statistical analyses were performed using
MedCalc 20.0 software. Categorical data were reported as
frequencies (percentages), while measurement data follow-
ing a normal distribution were expressed as mean standard
deviation. Fleiss kappa is used to represent the reliability of
multiple observers’ assessments of binary categorical vari-
ables. Cohen kappa is used to represent the reliability of
two observers’ assessment of binary categorical variables.
AUC (area under the curve of receiver operating charac-
teristic), sensitivity, and specificity were used to evaluate
the diagnostic performance of sonographers in accurately
identifying DDH standard images. A p value of < 0.05
was considered indicative of a statistically significant differ-
ence. A kappa value less than 0.20, 0.40, 0.60, 0.80, and 1.0
indicates Poor, Slight, Moderate, Substantial, and Excellent
agreement, respectively.

4.4 Experimental results

In the experimental results, we first compared the Quality-
DDH framework with other traditional quality classification
models in terms of DDH standardization. The compared
classification models included: ResNet-50 [32], DenseNet-
121 [33], Dilated ResNet-50 [34], visual transformer (ViT)
[35], BiSe-Net [36], and NHBS-Net [17]. Next, we further
evaluated the performance of the QualityDDH framework in
anatomically related usability discrimination for Checklist-I
through independent external validation. Then, we compared
the accuracy of ultrasound physicians in standardization
discrimination before and after AI assistance. Finally, we
conducted ablation experiments to analyze the impact of
module design and training strategies on the performance
of the QualityDDH model.

4.4.1 Comparison performance of DDH standardization

We designed a comparative study to evaluate the classifi-
cation accuracy of the QualityDDH framework against six
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Table 1 Comparison
performance of our
QualityDDH framework and
other state-of-the-art methods,
including ResNet-50 [32],
DenseNet-121 [33], Dilated
ResNet-50 [34], visual
transformer (ViT) [35]),
BiSe-Net [36], NHBS-Net [17],
in internal and external test
datasets

Methods Acc (%) Spe (%) Sen (%) Pre (%) F1 (%) κ

Internal-test dataset

ResNet-50 76.56 79.66 40.00 14.29 21.05 0.1078

DenseNet-121 79.69 83.05 40.00 16.67 23.53 0.1405

Dilated ResNet-50 81.25 83.05 60.00 23.08 33.33 0.2485

ViT 82.81 84.75 60.00 25.00 35.29 0.2727

NHBS-Net 79.69 81.36 60.00 21.43 31.58 0.2268

BiSe-Net 79.69 81.36 60.00 21.43 31.58 0.2268

Ours (QualityDDH) 85.94 86.44 80.00 33.33 47.06 0.4050

External-test dataset

ResNet-50 90.33 92.97 77.45 69.30 73.15 0.6728

DenseNet-121 92.93 95.53 80.39 78.85 79.61 0.7534

Dilated ResNet-50 93.27 95.73 81.37 79.81 80.58 0.7651

ViT 94.11 96.34 83.33 82.52 82.93 0.7937

NHBS-Net 93.60 95.93 82.35 80.77 81.55 0.7768

BiSe-Net 93.43 95.93 81.37 80.58 80.98 0.7701

Ours (QualityDDH) 97.33 97.79 95.10 89.81 92.38 0.9077

*Each network is the segmentation model added with a classification output header (one average pooling
layer and one linear output layer)
Boldface values denote the highest (best) score for the given metric

commonly used quality assessment models. The framework
showed superior performance in both internal and external
validation datasets, achieving the highest accuracy, sensi-
tivity, specificity, F1 score, and kappa value. In internal
validation, limited by the low proportion of non-standard
data, all models obtained a low kappa κ value. Compared
to other models, the QualityDDH model demonstrated a
3.13% increase in accuracy, a 1.69% increase in specificity,
a 20.00% increase in sensitivity, an 8.33% increase in pre-
cision rate, an 11.77% increase in F1 score, and a 0.1323
improvement in kappa κ value. In external validation, it
showed a 3.22% increase in accuracy, a 1.45% increase
in specificity, an 11.77% increase in sensitivity, a 7.29%
increase in precision rate, a 9.45% increase in F1 score, and
a 0.114 improvement in kappa κ value. Table 1 details each
model’s classification results on both validation datasets,
clearly showing that the QualityDDH model significantly
outperforms other classification algorithms in sensitivity,
precision rate, F1 score, and kappa κ value.

As shown in Fig. 7, we compared the confusion matrices
of these methods both internally and externally. Compared
to other quality assessment classification networks, our
QualityDDH performed best in both internal and exter-
nal validation, achieving accuracy rates of 85.94% and
97.33%, respectively. The quality assessment framework
implemented by QualityDDH significantly reduces false
positives and false negatives, not only providing visual dis-
crimination prompts but also better capturing the features of
non-standard images compared to traditional classification
networks.

4.4.2 Performance of identifying landmark in Checklist-I

Figure 8 shows examples of diagnostic process using the
QualityDDH model for standard plane determination and
compares them with golden standard, including examples
of common standard and non-standard images. The Quali-
tyDDH system was used to evaluate the 600 images in the
SPD dataset to obtain seven different structural landmarks
in Checklist-I. The QualityDDH AI system achieved 0.967
accuracy rate, 0.987 precision rate, 0.970 sensitivity rate,
0.894 specificity rate, and 0.979 F1 score. The final results
showed that the AUC of the QualityDDH model was 0.941,
as shown in Fig. 9 and Table 2. The AUC values of the Qual-
ityDDH system in S1-S8 were 0.694, 0.671, 0.906, 0.832,
0.939, 0.825, 0.927 and 0.841, respectively, the sensitivity of
its structurewere higher, ranging from0.987 to 1.000, and the
specificity were lower (0.389−0.893). In addition, by com-
paring with the golden standard, the final judgment results of
the QualityDDH system have excellent agreement (0.900),
also with excellent agreement in SF, FH, and JCP, and sub-
stantial agreement in CR and CB, with moderate agreement
in BR and La.

4.4.3 Performance of DDH standardization in AI-aided
sonographers

In addition, we conducted a detailed diagnostic perfor-
mance and diagnostic consistency study on eight important
anatomical structures and landmarks in the standard plane
determination process (Fig. 9). Without the assistance of
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Fig. 7 Confusion matrixes of compared classification models, including QualityDDH, ResNet-50 [32], DenseNet-121 [33], Dilated ResNet-50
[34], visual transformer (ViT) [35]), BiSe-Net [36], and NHBS-Net [17]
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Fig. 8 Visualization examples of QualityDDH framework aid sonographers. Example 1 in row 1 shows the AI-aided process in a standard US
images. Example 2 and 3 in row 2 and 3 show the AI-aided steps in non-standard US images, which are fail to pass checklist I and checklist II,
respectively

Fig. 9 ROC curves of identifying seven key structure in external validation dataset
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Table 2 Identification performance of the QualityDDH framework
compared with the golden standard standardization evaluations

Structures AUC Sen Spe κ

BR 0.694 1.000 0.389 0.552

95% CI (0.656 (0.994 (0.173 (0.318

0.731) 1.000) 0.643) 0.787)

La 0.671 0.992 0.35 0.462

95% CI (0.632 (0.981 (0.231 (0.330

0.709) 0.998) 0.484) 0.595)

SF 0.906 0.989 0.823 0.813

95% CI (0.880 (0.977 (0.655 (0.710

0.929) 0.996) 0.932) 0.916)

CR 0.832 0.998 0.667 0.747

95% CI (0.800 (0.991 (0.299 (0.507

0.862) 1.000) 0.925) 0.986)

FH 0.939 1.000 0.878 0.931

95% CI (0.917 (0.993 (0.738 (0.870

0.957) 1.000) 0.959) 0.991)

CB 0.825 0.998 0.652 0.762

95% CI (0.792 (0.990 (0.427 (0.611

0.855) 1.000) 0.836) 0.912)

JCP 0.927 0.990 0.864 0.884

95% CI (0.904 (0.977 (0.780 (0.832

0.947) 0.997) 0.926) 0.937)

*95% CI: 95% confidence interval

QualityDDHsystem, the experts had the best diagnosticROC
for structures, with a range of 0.500−0.960, especially in
the identification of BR, La, SF, FH, and JCP, the experts

had a significantly improved ability to identify anatomi-
cal structures than the attending sonographers and residents
(p < 0.001). In the identification of the structures of La, FH,
and JCP, the diagnostic AUC values of experts could reach
more than 0.800. However, the diagnostic performance of
attending and resident sonographers in the identification of
BR, SF, CR, and CB were poor, with AUC values ranging
from0.500 to 0.600.However, after the assistance ofQuality-
DDH model, the recognition ability of all sonographers was
improved, and the trend was still the same: Expert>Attend-
ing > Resident sonographer. The AUCs of SF, FH, and JCP
were higher than 0.800, and the performance of BR, La, CR,
and CB were higher than or close to 0.700 for all sonogra-
phers.With the assistance of the QualityDDHmodel, experts
still have a significant advantage over other sonographers in
the recognition performance in BR, La, and CR.

Without the assistance of theQualityDDHmodel, the final
judgment results of all sonographers had moderate to sub-
stantial consistency (kappa values: 0.688, 0.771−0.840), and
the consistency of the final judgment results within experts,
attending and resident sonographers were 0.840, 0.771, and
0.775, respectively. There was slight to moderate agree-
ment among the six sonographers in the identification of all
key structures, ranging from 0.291 to 0.688. The agreement
between two experts and two attending sonographers on the
eight structures were high, generally high above 0.6. How-
ever, the difference in consistency of these structures varied
considerably between the two residents, ranging from 0.000
to 0.793. After the assistance of the QualityDDH model,
the consistency of the final judgment results were excellent
among six sonographers, between two experts, and between
two attending sonographers and two residents, ranging from

Fig. 10 Performance of six sonographers before and after Quality-
DDH’s assistance comparedwith golden standard. a IdentificationAUC
values of the six radiologists before/after AI’s assistance comparedwith

the golden standard. b Identification consistency of the six radiologists
before/after AI’s assistance compared with the golden standard
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Table 3 Classification comparison shown in ablation study results
based on different regressors, including support vector machine (SVM),
AdaBoost, XGBoost, and multilayer perceptron (MLP) in external test
dataset

Model Acc (%) Sen (%) Spe (%) κ

SVM 94.67 88.24 95.98 0.8167

AdaBoost 95.67 91.18 96.59 0.8511

XGBoost 95.00 89.22 96.18 0.8282

MLP 97.33 95.10 97.79 0.9077

0.932 to 0.995. In contrast, the agreement of all sonogra-
phers in all structures was generally improved, as shown in
Fig. 10, especially in the identification of these structures in
SF, CR, FH, CB, and JCP, which reached excellent agree-
ment. The differences in internal consistency of the three
different levels of sonographers were gradually reduced, and
the differences in recognition consistency within a single
structure were also reduced. In particular, the recognition
consistency of residents was significantly improved, which
was generally increased to above 0.85 (except CB).

4.4.4 Ablation study

QualityDDH is a comprehensive framework for visualizing
and evaluating the quality of DDH ultrasound images. Abla-
tion experiments were performed on the SPPR module to
explore its role within the QualityDDH framework. Differ-
ent point coordinate regression models, including support
vector machine (SVM), AdaBoost, XGBoost, and Multi-
layer perceptron (MLP), were compared. The results are
presented in Table 3, which shows how the quality classi-
fication evaluation metrics changed with the use of different
point coordinate regression models. Among these models,
the MLP model achieved the highest accuracy in quality
assessment.

5 Conclusions

In this study, we developed QualityDDH, a visual quality
assessment framework based on the segmentation of key
structures in ultrasound images. It evaluates multi-structure
segmentation maps from the segmentation model against
standardized identification guidelines. QualityDDHachieves
high-precision and consistent DDH ultrasound image quality
assessment. It offers visual and interactive quality assessment
prompts, addressing the low robustness of existing methods
in clinical practice. By ensuring the standardization and con-
sistency of DDH ultrasound image acquisition, QualityDDH
helps doctors obtain standard planar images, thereby enhanc-
ing the accuracy of both doctors and AI-assisted screening.

Acknowledgements This work was supported by the National Natu-
ral Science Foundation of China (62402530, 82171936), the Shanghai
Jiao Tong University “Jiao Tong University Star” plan key project
of the Medical and Industrial Cross (YG2022ZD007), the Program
of Shanghai Academic/Technology Research Leader (23XD1403100),
the Science and Technology Commission of Shanghai Municipality
(23DZ2202200), and theKeyDisciplineConstruction Project of Jiading
District Health System (XK202403). We also thank the Bioinformatics
Center, Furong Laboratory for providing computational resources.

Author Contributions R. L. and M. L. were responsible for drafting
the main manuscript text, while Y. Z. and L. J. oversaw the research
activities. Data collection and method implementation were conducted
by R. L., M. L., X. L., Y., Z., and Q. L., with all authors participating
in the review of the manuscript.

Data availability No datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest The authors declare no Conflict of interest.

References

1. Schaeffer, E.K., Mulpuri, K., IHDI Study Group: Developmental
dysplasia of the hip: addressing evidence gaps with a multicen-
tre prospective international study. Med. J. Aust. 208(8), 359–364
(2018)

2. O’Beirne, J.G., Chlapoutakis, K., Alshryda, S., Aydingoz, U., Bau-
mann, T., et al.: International interdisciplinary consensus meeting
on the evaluation of developmental dysplasia of the hip. Ultraschall
Med. 40(4), 454–464 (2019)

3. Kotlarsky, P., Haber, R., Bialik, V., Eidelman, M.: Developmental
dysplasia of the hip: what has changed in the last 20 years? World
J. Orthop. 6(11), 886–901 (2015)

4. Jackson, J.C., Runge, M.M., Nye, N.S.: Common questions about
developmental dysplasia of the hip. Am. Fam. Physician 90(12),
843–850 (2014)

5. Roposch, A., Moreau, N.M., Uleryk, E., Doria, A.S.: Developmen-
tal dysplasia of the hip: quality of reporting of diagnostic accuracy
for US. Radiology 241(3), 854–860 (2006)

6. Graf, R.: The diagnosis of congenital hip-joint dislocation by the
ultrasonic combound treatment. Arch. Orthop. Trauma Surg. 97(2),
117–133 (1980)

7. Graf,R.,Mohajer,M., Plattner, F.:Hip sonographyupdate.Quality-
management, catastrophes—tips and tricks. Med. Ultrason. 15(4),
299–303 (2013)

8. Graf, R.: Hip sonography: background; technique and common
mistakes; results; debate and politics; challenges. Hip Int. 27(3),
215–219 (2017)
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