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Abstract
Developmental dysplasia of the hip (DDH) in newborns can cause serious long-term adverse effects if not promptly diagnosed
and treated. Early intervention via ultrasound screening at 0–6 months is beneficial. However, early DDH diagnosis by
ultrasound is complex and requires high-level experience for radiologists. Hence, deep learning for clinically assisted DDH
screening is meaningful. The DDH classification task is challenging due to low ultrasound image resolution and difficulty in
extracting structural features. We propose a dual-attention multi-task network (AutoDDH) for DDH grading using ultrasound
images. It includes a dual-attention module for feature enhancement, a feature fusion module for detail improvement, and a
dual-output branch for position embedding and generating outputs of DDH grading and anatomical structure segmentation.
With the help of the segmentation task, the average accuracy and AUC of DDH four classifications reached 80.43% and 0.96,
outperforming other methods and laying the foundation for DDH intelligent assisted screening. Code available at: https://
github.com/Liuruhan/AutoDDH.
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1 Introduction

Developmental dysplasia of the hip (DDH) is one of the most
common congenital disorders in newborns [1]. Early treat-
ment is crucial as correction becomes more difficult after
one year of age. Untreated DDH can lead to serious con-
sequences later in life, including lameness, inconsistent leg
length, pain, frequent surgery, osteoarthritis, and disability. In
severe cases, artificial hip replacementsmay even be required
in adulthood, and studies have shown that DDH is one of the
most common reasons for hip replacement in patients under
60 [2]. Ultrasound is the key means for early DDH screening
in newborns aged 0–6 months due to its non-invasive, non-
radiation, and low-cost characteristics [3]. Accurate DDH
classification diagnosis based on ultrasound images is highly
significant.

However, accurate ultrasonic DDH screening faces issues
such as slow experience accumulation for radiologists and
difficult screening techniques [4, 5]. While many researchers
are considering using deep learning technology for auto-
mated DDH diagnosis [6–8], existing methods based on
binary classification models and key point detection have
limitations in clinical practice [9, 10]. These methods have
achieved good accuracy through the design of binary classi-
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fication model and key point detection technology. However,
these methods are not effective in clinical practice. First,
the model based on binary classification cannot give visual
results, and the confidence is challenged in the clinic. In addi-
tion, the annotation method based on key point detection is
complicated, and the large-scale annotation costs the radi-
ologist a lot of time, so it is difficult to realize. Therefore,
how to use a small amount of structure segmentation label-
ing and a large number of classification labeling to develop a
multi-task learning model to achieve accurate and visualized
deep learning networks has become an important research
problem in the field of automated DDH screening.

To address these challenges,weproposeAutoDDH,which
combines dual-attention mechanisms and multi-task learn-
ing for optimal accuracy. There are four types of ultrasound
image in hip: normal hip development (Type I), mild DDH
(Types IIa and IIb), severe DDH (Type IIc), and hip disloca-
tion (Types III and IV) [11]. TheDDH classification standard
and examples are shown in Fig. 1. In summary, our contribu-
tions are in the following ways:

– We proposed a dual-attention multi-task network
(AutoDDH) for grading four types of DDH and segment-
ing seven key structures of the hip joint. The average
accuracy of AutoDDH is 80.43%, average F1 score is
81.17%, and average AUC is 0.96.

– We adopted a two-stage training method and multi-
task loss function. In the training process, we first
conducted segmentation training to learn anatomical
structure information, and then conducted multi-task

learning to improve classification performance (average
F1 increase by 5.57%).

– Based on theNHBS-Net composed of dilatedResNet, the
two-channel attention mechanism, and the feature fusion
module, we further integrated the location coding to inte-
grate the spatial location information better and improve
the segmentation effect of details.

The paper is structured as follows: Sect. 2 reviews relevant lit-
erature, Sect. 3 details our proposedmethod, Sect. 4 describes
the experiment setup and results, along with comparison and
analysis, and Sect. 5 introduces the discussions and conclu-
sions.

2 Related work

This section primarily analyzes the application of deep
learning-based models in DDH ultrasound images from the
following two related aspects: identification and segmen-
tation of hip bone and cartilage structures in newborns by
ultrasound, and automated ultrasound-based DDH screening
and diagnostic grading.

2.1 Key structure segmentation in DDH

Ultrasound-based segmentation and identification of bone
cartilage structure of hip joint in newborn serve as an impor-
tant foundation for subsequent screening, diagnosis, and
grading. Previous researchers have conducted extensivework
on the detection and segmentation of anatomical structures

Fig. 1 Methods and examples of ultrasound diagnosis and grading
measurement of DDH. a. Schematic diagram of six key points of grad-
ing measurement in standard ultrasonic image. 1—bony roof (left),
2—bony roof (right), 3—bony acetabular roof, 4—lower limb-plane,
5—middle of the labrum, and 6—turning point of the bony rim. b. The
standard of ultrasound diagnosis and grading of DDH is based on the

degree of α and β angles. c. An example diagram of the four DDH
classifications. d. Seven key anatomical structures in neonatal hip joint,
including joint capsule& perichondrium (JCP), bony roof (BR), labrum
(La), cartilaginous roof (CR), synovial fold (SF), femoral head (FH),
and chondro-osseous border (CB)
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in ultrasonic images. Early studies mainly focused on arti-
ficially designed features to segment bone structures with
high echo, such as the iliac bone. However, it was difficult
to achieve satisfactory results for other cartilage structures
with significant feature differences and identification diffi-
culties [12–14]. de Luis-Garcia et al. [15] segmented the
femoral head and bony rim based on energy function and
texture information to identify the anatomical structure of
the hip. In addition, Quader et al. [16] proposed using
confidence-weighted structured phase symmetry (CSPS) fea-
ture to segment different bone structures of the hip joint in
3Dultrasound images to improve the segmentation efficiency
of bone structures. Pandey et al. [17] proposed the shadow-
peak (SP)method to further simplify the bone shadow feature
extraction method, which has a certain improvement in accu-
racy and speed compared with CSPS.

Recently, deep learning method has also achieved out-
standing results in the field of hip joint structure segmentation
in neonatal ultrasound images. These methods can be well
extended to large-scale data and have demonstrated certain
accuracy and robustness for cartilage structures [18, 19]. El-
Hariri et al. compared artificial design features such asU-Net,
SP, and CSPS with single-channel and multi-channel inputs
and observed that deep learning methods performed better
than artificial features [18]. Moreover, in our previous study,
we proposed seven key neonatal hip bone-cartilage struc-
ture segmentation models, NHBS-Net. By designing feature
enhancement and fusion modules, we improved the accuracy
of the segmentation model in edge recognition, reduced the
error rate of bone-cartilage structure segmentation, andmade
the model highly robust for different data scales [19].

2.2 Ultrasound-based DDH screeningmethods

In recent years, researchers have focusedon the studyofDDH
intelligent diagnosis and screening models based on ultra-
sonic images and have achieved remarkable results. Deep
learning methods provide an important tool for the devel-
opment of automatic DDH diagnosis models for ultrasonic
images [9, 10, 20]. Some researchers consider using binary
classification methods to study DDH diagnostic models. For
example, Gong et al. [9] proposed a deep exclusive regu-
larization machine based on two-stage meta-learning for the
development of a DDH binary classification auxiliary diag-
nosis model for ultrasonic images. Experimental verification
was conducted, and an accuracy rate of more than 0.85 was
obtained.

Another group of researchers explored the use of anatomi-
cal structure segmentation and key point detection to achieve
DDH automatic line diagnosis and grading. Sezer et al. [20]
established a fully automatic computer-aided diagnosis sys-
tem based on a convolutional neural network. It carried
out automatic classification diagnosis based on the standard

plane on the basis of recognizing three necessary anatom-
ical and diagnostic elements in DDH ultrasound images.
Additionally, Shen Bozhi et al. also published an assisted
screeningmethod and screening system for hip joints in new-
borns, which was used to calculate the measurement angles
in standard ultrasound images. Chen et al. [10]developed a
deep neural network tool that can automatically label the
five key points involved in the Graf guideline [11]. It real-
izes the relevant angle measurement and DDH diagnostic
classification. However, the above methods did not consider
the relationship between DDH classification and the relative
location distribution of anatomical structures. On one hand,
the characteristic information and spatial location correlation
of structures could not be fully utilized.On the other hand, the
detected key points might conflict with the location of struc-
tures, resulting in low accuracy. Therefore, considering the
anatomical characteristics of DDH classification has more
important significance.

2.3 Multi-task learning

In the past few years, significant correlations have often been
demonstrated in medical tasks targeting the same images.
For instance, in the classification and segmentation of breast
cancer based on ultrasound images [21] and chest X-ray-
based pneumonia diagnosis and lesion area segmentation
[22]. Multi-task learning methods exhibit great potential in
medical imaging analysis for disease detection and diagnosis.
The combination of key structure segmentation and hierar-
chical diagnosis of ultrasonic imageDDHwith themulti-task
learning method also holds high research significance.

3 Method

The proposed dual-attention multi-tasking network archi-
tecture is shown in Fig. 2. We used dilated ResNet50 as
the network backbone to extract multi-scale features. Based
on the dual-attention and feature fusion module architec-
ture in [19], we enhanced and fused extracted features. We
used location coding to emphasize spatial position relation-
ships and improve segmentation and classification accuracy.
Location-encoded features are fed into two output branches
for segmentation and classification results. Additionally,
we propose a training strategy based on segmentation pre-
training. First, the segmentation branch helps the network
understand anatomical features and structure positions. Then,
the joint network is trained to improve multi-task learn-
ing performance. Our network has fewer parameters and
can achieve optimal segmentation classification performance
compared to others.
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Fig. 2 Overview of AutoDDH. The AutoDDH model consists of four
modules: network backbone based on dilated ResNet50, dual-attention
module, feature fusion module, and dual-output branch for segmenta-
tion and classification. The ultrasonic image is augmented by the image
enhancement method of gray-scale transformation and then input into
the network backbone to obtain the low-dimensional features and high-

dimensional features. The high-dimensional features are enhanced by
DAM, and then fused with the low-dimensional features by FFM. The
resulting fusion features enhance the spatial position information of the
features by location coding. Finally, the task is segmented and classified
by two output branches, respectively

3.1 DDH segmentation and classification

Our proposed multi-task model aims to achieve intelli-
gently assisted DDH classification using anatomical infor-
mation, thereby aiding in enhancing the efficiency of clinical
DDH screening. DDH ultrasound screening has more com-
plex ultrasonic diagnostic criteria. Table1 summarizes the
detailed description of four Graf’s classification types of
ultrasound diagnosis [11], including normal, mild DDH,
severe DDH, and hip dislocation.

3.2 Data augmentation

Since the ultrasound images obtained from different partic-
ipating infants vary in size, and the classification of DDH
depends on the position relationship between anatomical
structures in the images. Consequently, image augmenta-
tion methods such as stretching and scaling, which alter
the shape and position of anatomical structures in ultrasonic
images, are not suitable for DDHultrasonic images. In image
preprocessing, we employed the method of equal ratio trans-
formation to first transform all ultrasound images to the same
height, and then fill the width with zero value to ensure that
each image has the same length and width without chang-
ing the relative position of the anatomical structure. Further,
in image augmentation, we selected inversion, gray linear
change, gamma transform, and other augmentation methods
to enrich the diversity of input without affecting the key posi-
tion information.

3.3 Pre-trained dilated ResNet50

For the selection of the networkbackbone,we adopteddilated
ResNet50 [23] as the backbone of the feature extractor. The
dilated ResNet architecture can enable the back convolu-

tional layer to maintain a larger feature maps size while
keeping the number of parameters unchanged and the field
of view of the convolutional layer at each stage unchanged.
This is beneficial for the detection of small targets such as
La and SF. When constructing AutoDDH, we took advan-
tage of the pre-trained weights on ImageNet and performed
fine-tuning on our dataset based on that weight. The weight
transfer considers only the parameters of the four convolution
stages used for feature extraction.

3.4 Dual-attentionmodule

The attention mechanism is capable of enhancing features,
highlighting more useful and crucial ones. Models based
on the attention mechanism have also achieved remarkable
results in medical image processing. In our previous research
work [19], NHBS-Net based on dual attention has yielded
excellent results in the segmentation of seven key struc-
tures of hip joints in infants. In this study, we employed
the previous dual-attention module (DAM) to enhance the
features extracted by dilated ResNet50 [23]. The implemen-
tation details of the dual-attentionmodule are shown inFig. 3.
The output of dilated ResNet50 is fed into DAM to obtain
position attention maps (PAMs) and channel attention maps
(CAMs). The two-channel attention mechanism can make
the model pay more attention to the structure-related fea-
tures, which has advantages for the subsequent multi-tasks
of key point detection and structure segmentation.

3.5 Feature fusionmodule and output branches

AutoDDH uses a two-level feature fusion module to per-
form feature fusion after different enhancements and fusion
of high and low dimensional features. The structural details
of the fusion module used are shown in Fig. 4. Through the
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Table 1 Graf’s grade [11] for developmental dysplasia of the hip using ultrasound

Grades Description α angle range β angle and cartilaginous roof Age range

Type I Normal ≥ 60◦ Type Ia: < 55◦ Any age

Type Ib: > 55◦

Cover the femoral head well

Type IIa/IIb Mild DDH 50◦ − 59◦ 55◦ − 77◦ Type IIa: < 3 mths

Cover the femoral head Type IIb: > 3 mths

Type IIc/IId Severe DDH 43◦ − 49◦ < 77◦ Any age

Type IIc: Cover the femoral head

Type IId: Decentered hip with a displaced

cartilage roof

Type III/IV Hip dislocation < 43◦ Labrum pressed upward or downward Any age

Fig. 3 The architecture of the
dual-attention module. The
dual-attention module contains
two-path attention named
enhance channel attention
module position attention
module. In two attention paths,
different paths enhance
important information in
channel and location relatively

FFM module, two attention feature maps can be fused well,
and high-level feature maps and low-level feature maps can
be fused to obtain better feature representation.

After that, the extracted high-level features (feature fusion
maps F ∈ R

C×H×W ) are reshaped to flatten features R ∈
R
C×N (N = H × W ). The flatten features R are fed into a

1-D embedding layer Emb to obtain position embedding fea-
tures P ∈ R

C×N . Finally, we resize the position embedding
features P to the same size as F .

The input of two output branches (segmentation branch
and classification branch) is the sum of position embed-
ding feature P and high-level features F . We use two
convolutional layers and an interpolation layer to generate
segmentation results, and an average pooling layer and a lin-
ear layer to generate classification results.

3.6 Training strategy of AutoDDH

To take full advantage of the relevance of segmentation and
classification tasks, we designed a two-stage training strat-
egy (TTS) using clinical diagnostic logic, as shown in Fig. 5.

First, seven kinds of key anatomical structure segmentation
data were used to train the feature extraction, enhancement,
fusion backbone and segmentation branches, so that the
AutoDDHmodel could extract the relative features and posi-
tion relationships of different anatomical structures, and save
the model parameters with the best segmentation accuracy.

After that, the AutoDDH model is fine-tuned based
on the parameter weights mention below. Specifically, the
segmented data of seven structures were processed, and
2 anatomical structures closely related to diagnosis were
retained: BR and La. The processed segmentation labels
are supervised jointly with the classification results, and the
AutoDDH model is trained again. At this time, both the seg-
mentation and classification output branches are trained to
obtain the final segmentation and classification performance.

3.7 Loss function

For segmenting seven anatomical structures of the hip joint,
a segmentation loss function combined with focal loss and
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Fig. 4 Structure figure of feature fusionmodule.A. Structure details
of feature fusion block (FFB) using in fusing the location and channel
feature maps. B. The architecture of feature fusion module. First, a fea-
ture fusion block uses PAMs andCAMs to generate fused dual-attention
maps that have the same dimension of location or channel feature maps,
and the dual-attention maps are interpolated to 16 times the original
(width×4, height×4). Another feature fusion block is applied to fuse
dual-attentionmaps in the above and low-level featuremaps. The output
of stage 2 of dilated ResNet50 goes through a refined convolution layer
to produce a low-level feature map with the same number of channels
as CAMs and PAMs

Fig. 5 Schematic diagram of training strategy. Two steps are used in
training. First, the feature extraction, enhancement, and fusion modules
are trained through seven key structures segmentation task. In this step,
only segmentation branch is trained. After that, the whole AutoDDH
network is trained by two tasks: segment two diagnosis-related anatomi-
cal structures and grade 4 types of DDH. Before training, we transferred
the weights of best model in step 1

cross-entropy loss is used. Details of the segmentation loss
function can be found in [19].

Further, in segmentation and classification of multi-task
learning, the overall loss Ltot is as follows:

Ltot = Lseg + θ · Lcls (1)

Lseg takes the same loss form as in [19], but changes the
number of classes from seven to two.Lcls is the classification
loss, and θ is the weight of classification loss.

There is a serious class imbalance problem in DDH grad-
ing, with very few severe DDH and hip dislocation, so we
consider using focal loss as the classification loss to solve the
class imbalance problem. The classification loss function is
as follows:

Lcls = αt (1 − pt )
γ log(pt )

=
∑

i

−αi
t (1 − pt )

γ log(pt )
(2)

where αt = {. . . , αi
t , . . . , α

i
t , . . . , α

CN
t } is the weighted

parameters of different DDH types, CN is four represent-
ing four classes of DDH, pt represents the output probability
distribution, γ is the weight of difficult samples.

4 Experiments

4.1 Dataset

Our study analyzed data from two datasets. The first, the
neonatal hip ultrasound (NHU) dataset, included 563 ultra-
sound images from 271 infants, segmented into seven key
structures by experienced radiologists. These images were
categorized into threeDDHgrades: normal, mild, and severe.
The NHU dataset was split into a training set (400 images),
validation set (53 images), and test set (110 images). For
more details, see Reference [19].

The second dataset expanded on the first by adding
ultrasound data from Renji Hospital, Shanghai Jiao Tong
University School ofMedicine, collected betweenDecember
2020 and June 2022. It included infants aged 0 to 6 months
with high-risk factors for DDH. The study was ethically
approved, and images were taken using 5/7.5MHz linear
ultrasound transducers set at 40-55mm depth. Each infant
had 1-10 DICOM-formatted images taken. This dataset
contained 4184 images from 778 individuals, divided into
training (2685 images), validation (671 images), and test sets
(828 images). There was no overlap in the training, valida-
tion, and testing sets between the two datasets. See Fig. 6 for
the detailed division and distribution of data.
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Fig. 6 Relationship between datasets and data distribution diagram of dataset 2. a.Relationship between dataset 1 and dataset 2. a.Distribution
of DDH types in training set 2. c. Distribution of DDH types in validation set 2. d. Distribution of DDH types in testing set 2

4.2 Implementation details

Our study carried out all experiments on an Intel(R) Xeon(R)
CPU E5-2678 v3 @ 2.50GHz CPU and two NVIDIA
GeForce RTX 3090 GPUs running on the Ubuntu Linux
platform. The proposed network, AutoDDH, and other state-
of-the-art methods employed the same loss function design
and grid search strategy for hyperparameters. To determine
suitable hyperparameters, we explored optimal values of
batch size (ranging from2 to 32), learning rates (from10−3 to
10−7), and the weight of focal loss (from 0.1 to 5). We used
the Adam optimizer for the selection of the optimizer. All
methods were trained for 30 epochs. Themodel that achieves
the best performance on the validation set is retained as the
final model, and the model performance is verified on the test
set.

4.3 Evaluationmetrics

In segmentation task, the performance of AutoDDH network
and other segmentation networks was evaluated using Dice
similarity coefficient (DSC), the DSC metric can be calcu-
lated as follows:

DSC = 1 − 2
∑

pixels ytrue ypred∑
pixels ytrue

2 + ∑
pixels ypred

2 (3)

where ytrue is the ground truth segmentation label for each
class and ypred is the prediction figure for each class.

The performance of AutoDDH and other classification
models was evaluated using accuracy, F1-score, recall, κ ,

andAUCsofReceiver operating characteristic (ROC) curves.
The accuracy, F1-score, recall, and κ can be defined as fol-
lows:

accuracy = T P + T N

T P + T N + FP + FN
(4)

re = T P

T P + FN
(5)

F1 = 2 × pre × rec

pre + rec
(6)

κ = accuracy − pe
1 − pe

(7)

whereT P is the true positive samples,T N is the true negative
samples, FP is the false positive samples, FN is the false
negative samples, pre = T P

T P+T P is the precision rate, and
pe is the sum of the samples of the actual and predicted
quantities for all categories divided by the square of the total
number of samples.

4.4 Experimental results

In the experimental results, we first compare the performance
of AutoDDH model with other classification models and
multi-task models on DDH classification. The models com-
pared include: ResNet-50 [24], DenseNet-121 [25], dilated
ResNet-50 [23], and visual transformer (ViT) [26], BiSeNet
[27], AUNet [28], and UNet [29]. Then, we further com-
pared the segmentation performance of AutoDDH model
with other models on the anatomically relevant diagnosis.
Finally, we conducted ablation experiments to explore the
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Table 2 Comparison
classification performance of
our AutoDDH and other
state-of-the-art methods in
image level, including
classification networks
(ResNet50 [24],DenseNet-121
[25], dilated ResNet-50 [23],
and visual transformer (ViT)
[26]) and multi-task learning
networks (BiSeNet [27], AUNet
[28], and UNet [29])

Method’s types Model acc (%) re (%) F1 (%) κ

classification ResNet50 73.07% 65.16% 62.24% 0.4476

DenseNet121 72.95% 63.28% 60.31% 0.4468

DilatedResNet50 74.88% 73.82% 69.03% 0.4815

ViT 73.91% 67.66% 66.34% 0.4590

multi-task learning∗ BiSeNet 77.42% 79.45% 74.89% 0.5368

UNet 76.93% 77.18% 72.26% 0.5291

AUNet 78.50% 80.24% 75.60% 0.5615

Ours (AutoDDH) 80.43% 87.01% 81.17% 0.5994

∗ Each network is the segmentation model added with a classification output header (one average pooling
layer and one linear output layer)

influence of module design and training strategies on model
performance in AutoDDH.

4.4.1 Comparison performance of DDH grading

In order to evaluate the validity of the proposed model struc-
ture, we conducted an experiment comparing the results
of AutoDDH in DDH four classifications with the current
popular network models. First, we compared it to four pop-
ular classification networks. Compared with models such
as ResNet-50, DenseNet-121, dilated ResNet-50 and ViT,
the proposed AutoDDH network has improved in accuracy,
recall rate, F1 score, and κ value achieved better results.
Compared with the best results in the classification model,
accuracy was increased by 5.55%, recall rate by 13.19%, F1
score by 12.14%, and κ value by 0.1179. Furthermore, our
AutoDDHnetwork also achieves better results than themulti-
task model (BiSeNet [27], AUNet [28], and UNet [29]).
Comparedwith the best results in themulti-taskmodel, accu-
racy was increased by 1.93%, recall rate by 6.77%, F1 score
by 5.57%, and κ value by 0.0379.

Table2 shows the picture-level training results for each
model on the dataset. As can be seen from the table, dilated
ResNet-50 achieved the best performance among all the
compared classification models when using the classifica-
tion model, and was significantly better than other models in
four indicators. AutoDDH also adopts the network backbone
based on dilated ResNet-50 and achieves the optimal accu-
racy, which is higher than 80% in accuracy, recall rate and F1
score. We then use the ROC curve to show the accuracy of
the AutoDDH across the four DDH classes (see Fig. 7). The
average AUC of AutoDDH is 0.96. It can be seen from the
above results that the proposedAutoDDHmodel is obviously
superior to other existing models in DDH classification.

Further, we obtain a confusionmatrix for the top six preci-
sion models on the test set (as shown in Fig. 8). As shown in
Fig. 8, compared with other networks, our AutoDDH obtains
the best four types of accurate predictions, with the accuracy
results of 84.2%, 71.5%, 92.3% and 100.0%. The main inac-

Fig. 7 The ROC curves of the four DDH types (normal, mild DDH,
severe DDH, and hip dislocation) in AutoDDH model

curate predictions came from the mild DDH class, which is
consistent with clinical experience: the identification of mild
lesions is often the most difficult problem to solve in clinical
practice.

4.4.2 Comparison performance of DDH key structure
segmentation

After using the two-stage multi-task learning training strat-
egy, AutoDDH not only has the ability to output DDH
classification, but also can improve the segmentation of the
two structures related to diagnosis (labrum and bony rim).
The results of segmenting the final two structures are shown
in Table3. As can be seen from Table3, AutoDDH also
achieved the best segmentation effect in the segmentation
of labrum and bony rim. AutoDDH achieved 85.05% DSC
on labrum and 89.48% DSC on bony rim. The final average
segmentation accuracy is 1.35% higher than the best model
in other methods. In addition, we also show an example of
segmentation of AutoDDH in detail and overall compared to
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Fig. 8 The confusion matrixes of top-6 accuracy models, including AutoDDH, AUNet [28], BiSeNet [27], dilated ResNet-50 [23], ViT [26], and
ResNet-50 [24]. C0: normal, C1: mild DDH, C2: severe DDH, and C3: hip dislocation

other methods (as shown in Fig. 9). It can also be seen from
Fig. 9 that AutoDDH has a good detail segmentation ability.

4.4.3 Ablation study

In order to find out the contribution of each module and
training strategy in AutoDDH to the improvement of model
accuracy, we conducted sufficient ablation experiments to
explore. To do this, we conducted two experiments. The
first experiment explored how TTS helped improve classi-

Table 3 Comparison segmentation performance of our AutoDDH and
other state-of-the-art methods, including BiSeNet [27], AUNet [28],
and UNet [29], in two diagnosis-related key structure segmentations

Model DSC (%)
Labrum bony roof average

BiSeNet 80.92% 86.74% 83.83%

UNet 84.39% 87.44% 85.92%

AUNet 83.29% 88.10% 85.69%

Ours (AutoDDH) 85.05% 89.48% 87.27%
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Fig. 9 Segmentation results of BiSeNet [27],AUNet [28],UNet [29],
and AutoDDH compared with ground truth. a. An example of seg-
mentation details in two diagnosis-related key structure segmentations.
b.Twoexamples of segmentations in sevenkey structures. (a) ultrasound

images, (b) ground truth, (c) segmentations of UNet, (d) segmenta-
tions of AUNet, (e) segmentations of BiSeNet, and (f) segmentations
of AutoDDH

Table 4 Classification
comparison shown in ablation
study results, including five
kinds of experiments.
"Baseline" shows the evaluation
metrics for the original dilated
ResNet-50 model

Model accuracy (%) re (%) F1 (%) κ

DilatedResNet50 74.88% 73.82% 69.03% 0.4815

Baseline + DAM 77.90% 77.74% 73.82% 0.5453

Baseline + DAM + FFM 78.38% 81.73% 75.08% 0.5590

Baseline + DAM + FFM +PE (AutoDDH) 80.43% 87.01% 81.17% 0.5994

"Baseline + DAM" represents the evaluation metrics for the dilated ResNet-50 backbone which added a DAM
module. "Baseline + DAM + FFM" represents the evaluation metrics for the dilated ResNet-50 backbone
which added a DAM and FFM modules. "Baseline + DAM + FFM + PE" illustrates the evaluation metrics
for the dilated ResNet-50 backbone which added DAM, FFM and position embedding

fication accuracy.Table 4 shows the changes of classification
evaluation indicators with and without TTS model. As can
be seen from Fig. 10, using TTS can significantly improve
the classification performance of the model. Based on TTS,
AutoDDH’s accuracy in classification increased by 2.90%,
recall rate by 5.59%, F1 score by 6.22%, and κ value by
5.87%. This results show that according to the diagnostic
logic, the method of phased training can better integrate
relevant information and improve the performance of classi-
fication.

Further, we carried out the second experiment. In exper-
iment 2, the influence of each module in AutoDDH on
performance after TTS is adopted is explored. The exper-
imental results are shown in Table4. It can be seen from
the experimental results that all the modules have improved
the results after joining. Through DAM, the accuracy rate
increased by 0.72%, recall rate by 2.29%, F1 score by 3.03%,
and κ value by 1.24%. Through FFM, the accuracy rate
was increased by 0.48%, recall rate by 3.99%, F1 score by
1.26%, and κ value by 1.37%. Through PE, the accuracy
rate increased by 2.05%, recall rate by 5.28%, F1 score by
6.08%, and κ value by 4.04%. It can be seen from the exper-
imental results that the introduction of position embedding

Fig. 10 Bar chart for comparison of classification performance with or
without two-stage training strategy in AutoDDH network

makes the classification result improve most obviously. This
also supports the view that the introduction of location fea-
tures can make the model obtain more accurate predictions
in classification.
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5 Discussions and conclusions

In this study, we developed a dual-attention-based multi-task
network and the corresponding two-stage training method
(AutoDDH). AutoDDH introduces a dual-attention module
that enhances feature recognition, a feature fusion module
for comprehensive analysis, and a position coding module
for spatial awareness, leading to superior diagnostic accuracy
and segmentation of key structures in DDH. This system not
only outperforms existingmodels but also holds high clinical
value by enabling accurate visual DDH ultrasound diagnosis
from standard images, which is crucial for early intervention
and treatment planning.

The two-stage training method of AutoDDH ensures the
network’s adaptability and generalization, which is essential
for clinical use. The potential integration of AutoDDH into
clinical procedures could streamline the screening process
forDDH, aidingdoctors inmakingquicker andmore accurate
diagnoses. This could lead to earlier interventions, improved
patient outcomes, and reduced healthcare burdens.

While AutoDDH shows promise, challenges such as
clinical validation, image quality variability, and system
robustness against ultrasound video must be addressed.
Future research will focus on overcoming these to ensure
AutoDDH’s reliability and safety in diverse clinical settings.
In conclusion, AutoDDH represents a great advancement in
AI-aided DDH diagnosis, with the potential to revolution-
ize patient care through automation and accuracy. Continued
development is necessary to fully realize its clinical potential.
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